sábado, 6 de febrero de 2021

Más allá del horizonte

Vamos a demostrar la curvatura de la Tierra. No vamos a convencer a ningún terraplanista, por supuesto, ya que son gente cerrada a la argumentación lógica. Pero igual es una linda demostración. ¡Atención! El siguiente párrafo contiene escenas de matemática explicita. Si sufrís de matematicofobia salteátelo sin culpa hasta el párrafo siguiente, el que que está justo antes de las fotos.

Frente a Bariloche el lago Nahuel Huapi mide unos 8 kilómetros de ancho. Si la Tierra fuera plana no habría problema en ver la costa del otro lado, pero en una Tierra redonda es más difícil, porque no podemos ver más allá del horizonte. ¿A qué distancia está el horizonte? Depende de la altura desde la cual observamos. El cálculo es así. Como se ve en la figura, se puede usar el Teorema de Pitágoras (triángulo rectángulo azul) para calcular la distancia al horizonte (d) que se observa desde el punto O a una altura h. Despejando d se obtiene la fórmula:

\[ d = \sqrt{2Rh + h^2} \approx \sqrt{2Rh}, \]

donde la segunda expresión es una buena aproximación si la altura h es mucho menor que el radio de la Tierra, R. Si queremos números, \( d\approx 3.57\sqrt{h}\) da la distancia en kilómetros si ponemos la altura en metros. Si me agacho en la orilla, con h = 1 m, el horizonte está en medio del lago, a 3.57 km, y no debería poder ver la orilla opuesta. Si me paro, h = 1.6 m da un horizonte a 4.5 km, todavía más cerca que la orilla opuesta. Si subo a la Costanera, que está 16 m más arriba, el horizonte queda a 14 km y podría ver la costa.

Aprovechando un inusual día sin viento hice fotos para mostrarlo. Este es el paisaje desde la Costanera y desde la orilla del lago. Con una lente gran angular no se ve mayor diferencia en la orilla opuesta. Por supuesto, se pueden ver las montañas, la pampa de Jones y el bosque. Pero no se distingue si se ve o no la orilla del otro lado del lago.

Pero haciendo una foto con zoom... ¡chan! 

Desde la Costanera podemos ver una playa que desde el nivel del lago no se puede ver. Queda oculta detrás del propio lago, cuya superficie es curva... ¡porque la Tierra es redonda! Si la Tierra fuera plana no habría horizonte, y la playa debería verse igual desde las dos alturas.

Por supuesto, esto es una pavada. Los griegos, que eran un pueblo de navegantes, lo observaron hace miles de años, notando que si un barco estaba lejos se veía sólo la vela pero no el casco. Es un conocimiento que ha estado en nuestra cultura desde hace milenios. En el siglo XV, cuando Colón emprendió su viaje, la duda no era si la Tierra era redonda, sino cuánto tiempo le llevaría llegar a Oriente.

Una de las demostraciones más lindas que he visto de este efecto de curvatura de las grandes superficies de agua es esta foto del eclipse solar en febrero de 2018 sobre el Río de la Plata, hecha desde la costa uruguaya por Fefo Bouvier, en la que se ve sólo la parte de arriba de los edificios de Buenos Aires. Toda la parte baja de la ciudad está oculta detrás del propio río. La Tierra es redonda, tomá mate y avivate.


La foto del eclipse es del fotógrafo uruguayo Fefo Bouvier, y apareció en la APOD en aquella ocasión.

Los terraplanistas seguramente tendrán alguna explicación, porque tienen una explicación distinta para cada uno de los fenómenos relativos a la forma de la Tierra. Lo que no aceptan es que hay una explicación única para todos los fenómenos: que la Tierra es redonda. En particular, seguro que dirían algo sobre la refracción o algo por el estilo. La refracción de la luz en la atmósfera, sin embargo, juega en la dirección opuesta a la que podrían apelar. Los rayos se curvan de manera tal que revelan objetos que se encuentran un poco por debajo del horizonte geométrico. No ocultan los que están por arriba. Lo mismo pasa con el espejismo llamado Fata Morgana, que también tengo fotografiado en el lago, capaz que otro día lo muestro.

8 comentarios:

  1. Según la aproximación del cálculo, el horizonte desde la ventana de mi altillo es de 6,67 Km. Mucho menos de lo que imaginaba.

    ResponderEliminar
  2. Respuestas
    1. información muy didáctica e intuitiva como siempre, gracias!
      también yo pude capturar al parcial del 2018, pero no con la calidad de lo que mostrás aquí...
      buenos cielos!

      Eliminar
  3. la comparación con la playa del lago está fantástica...

    ResponderEliminar
  4. Muy buena la explicación, el ejemplo con las fotos suma mucho. Muchas gracias!

    ResponderEliminar
  5. muy bueno! queremos ver el espejismo del lago!

    ResponderEliminar
  6. si no nos muestran el espejismo, podríamos organizar un piquete jajaja

    ResponderEliminar