sábado, 14 de octubre de 2017

Felices los cuatro

Han pasado 60 años desde octubre de 1957. Sesenta años del estreno de El puente sobre el río Kwai. Del lanzamiento del Sputnik. Del primer Toyota exportado de Japón a Estados Unidos. De la aparición de este número del Reviews of Modern Physics:


Síntesis de los elementos en las estrellas, por Margaret Burbridge, Geoffrey Burbridge, William Fowler y Fred Hoyle. Un tremendo paper de 108 páginas, popularmente conocido como B2FH. Cuando lo fui a buscar en la Biblioteca me sorprendió encontrar que comienza con un par de citas de Shakespeare:


"Son las estrellas, las estrellas sobre nosotros, las que controlan nuestra condición"; pero tal vez: "La culpa, querido Bruto, no está en nuestras estrellas sino en nosotros mismos".

El trabajo es brillante y monumental, y fue revolucionario en su época. Por primera vez había una explicación científica del origen de los elementos químicos, especiamente de los elementos "pesados". Pesados entre comillas, ya que en realidad son todos los elementos excepto el hidrógeno, el helio y el litio. Todos. Paradógicamente, fue una respuesta de Hoyle a la explicación propuesta por Gamow y Alpher (ya conté sobre ellos y el famoso paper alfa-beta-gamma). Gamow era un defensor del comienzo denso y caliente del universo (el Big Bang), pero su modelo, a pesar del pretensioso título del paper, sólo explicaba el origen primordial de los tres elementos más livianos.

Hoyle no creía que el Big Bang fuera cierto; fue él quien le puso el nombre con intención peyorativa, tipo: "No me van a decir que el universo comenzó con una gran explosión". Durante una década buscó una explicación alternativa, un "estado estacionario" que pudiera explicar la formación continua de todos los elementos químicos. Atraído por la capacidad humana y técnica del Laboratorio Kellogg de física nuclear en Caltech, Hoyle empezó a visitarlos frecuentemente. Allí estableció una buena colaboración con William Fowler, recientemente doctorado. Pronto se les unieron los Burbridge, una pareja de astrónomos británicos que habían trabajado con Hoyle en Cambridge. La pasaban bien los cuatro.


El modelo de estado estacionario no prosperó, pero la explicación de los diversos procesos nucleares que dan lugar a todos los elementos químicos, en diversos tipos de estrellas, descriptos con enorme detalle en el paper B2FH, era sensacional y sobrevivió a la intención original de Hoyle. Explicaron cómo las estrellas suficientemente pesadas, las gigantes y supergigantes rojas, podían formar en sus núcleos los elementos hasta el hierro. Y cómo las condiciones extremas de las explosiones de supernova eran capaces de producir el resto, y de liberarlos en el espacio interestelar para la siguiente generación de estrellas y planetas.

Nunca entendí cómo no les dieron el premio Nobel a los cuatro, por haber explicado nada menos que el origen de los elementos químicos de los que estamos hechos: desde nosotros mismos hasta el oro mismo con el que funden las medallas Nobel. En 1983 Fowler recibió medio premio por su trabajo. Murió en 1995. Hoyle falleció en 2001 y Geoffrey en 2010.

Margaret, de 98 años, todavía vive. Este mes, brindemos por ella. La bebida que elijamos estará hecha de átomos forjados en las estrellas, como ella explicó.

Compartir:

sábado, 7 de octubre de 2017

A correr, que viene TC4

Dentro de pocos días, un asteroide algo más grande que el que explotó sobre Chelyabinsk en 2013 causando 1500 heridos y extensos daños, pasará muy cerca de la Tierra. Se trata de 2012 TC4, descubierto en 2012 cuando pasó a 94800 km de nosotros, un cuarto de la distancia a la Luna. En aquella ocasión se lo observó apenas durante 7 días, suficientes para determinar aproximadamente su órbita y calcular que volvería a acercarse el 12 de octubre de este año, pero no para calcular por dónde pasaría. ¿Había algún riesgo de que cayera a tierra? Los telescopios "recuperaron" a TC4 a fines de julio, y con las nuevas observaciones resulta que estamos seguros: pasará a unos 50000 km, lo cual es muy cerca, apenas un décimo de la distancia a la Luna, menos del doble de la altura de los satélites de comunicaciones. Rápidamente hice una simulación en Celestia para compartirla aquí:



El aspecto que tiene en el video es imaginado, ya que no conocemos de cerca ningún asteroide de este tamaño. Tal vez sea como uno de los grandes cascotes que cubren la superficie del asteroide Itokawa, visitado por el robot japonés Hayabusa hace unos años. Itokawa es mucho más grande, mide unos 500 metros de punta a punta, y la gran piedra cerca de su extremo más redondeado es probablemente del tamaño de TC4.

El paso cercano de 2012 TC4 es una excelente oportunidad para poner en práctica la flamante Oficina Coordinadora de Defensa Planetaria, creada a propósito del incidente de Chelyabinsk con el objeto de monitorear estos objetos potencialmente peligrosos. Es fácil exagerar el peligro que representan para la humanidad, pero en el fondo nos están cayendo encima todo el tiempo, a razón de 100 toneladas por día. Así que a la larga un evento catastrófico es casi inevitable.


Asteroides como el de Chelyabinsk, o como 2012 TC4, pueden explotar en la atmósfera con la fuerza de docenas de bombas atómicas. Es improbable que lo hagan sobre una ciudad, pero puede ocurrir. De hecho, Chelyabinsk podría haber sufrido mucho más daño si el ángulo de caída hubiese sido menos rasante.

De todos los desastres naturales, la caída de un asteroide es el único que podemos predecir y evitar con la tecnología actual. No podemos ni apagar un volcán, ni evitar un terremoto, ni desviar un huracán. Pero podemos descubrir todos estos objetos que pasan cerca de la Tierra, monitorearlos para detectar a tiempo los cambios de sus órbitas, y hasta desviarlos si estuvieran en una trayectoria de colisión. Hay ya sistemas automáticos de descubrimiento de asteroides, como Pan-STARRS (el descubridor de TC4, y que comentábamos recientemente como descubridor de supernovas), Neo-WISE y otros.  Todavía no hubo ningún intento serio de atrapar o desviar un asteroide, para poner a prueba los potenciales métodos de protección planetaria. Esperemos que finalmente se hagan, como la propuesta Asteroid Redirect Mission, para que cuando llegue el momento no haya que echarse a correr.


El video de Itokawa es de ISAS/JAXA. La foto del observatorio Pan-STARRS es de Pan-STARRS. La adaptación de los datos orbitales del Minor Planets Center para usar en Celestia está hecha con mi script MPCORB2SSC.


Compartir:
Related Posts Plugin for WordPress, Blogger...