11/05/2019

Cuestión de tiempo

Hace poco, en una entrevista radial le preguntaban a un famoso físico argentino cuánto tiempo lleva descubrir las leyes de la naturaleza. No dio una respuesta satisfactoria, y como es una pregunta que resurge cada tanto voy a decir algo al respecto. La verdad es que lleva décadas. Típicamente varias décadas, y terminar de atar todos los cabos sueltos puede llevar entre 50 y 100 años después de que se desarrollaron las primeras ideas. Así es: en general los pioneros no llegan a ver la culminación de sus esfuerzos. Es como colonizar un territorio, más que como descubrir un continente.


Los ejemplos abundan. El conocido caso de Einstein, que en 1905 explicó el efecto fotoeléctrico en términos de la naciente mecánica cuántica. Se trataba de una explicación teórica de un experimento sencillo. ¿Era la explicación correcta? Recién 10 años después Robert Millikan logró hacer experimentos de precisión que confirmaban las ecuaciones de Einstein. Y pasaron 60 años más (¡sesenta!) hasta que un experimento crucial demostró que una explicación semiclásica era insuficiente.

El propio Einstein acabó desencantado del desarrollo posterior de la mecánica cuántica, y formuló un "experimento pensado" para refutar su interpretación habitual. Es el famoso trabajo Einstein-Podolsky-Rosen de 1935, que introduce lo que hoy en día llamamos entanglement. Recién en 1964, casi 30 años más tarde, John Bell demostró que había una manera de convertir el argumento EPR en un experimento real, con predicciones distintas si las cosas eran como decía Einstein o no. Esto fue un año antes de que yo naciera. En 1982, cuando yo estaba en 5o año, Alain Aspect logró hacer el experimento. Y recién en 2015 se publicó el resultado del primer experimento tipo Bell libre de loopholes (una cuestión técnica), cierre definitivo de la cuestión, 80 años después.

¿Cómo se compatibiliza la relatividad general con la mecánica cuántica? Hoy por hoy, el mejor atisbo que tenemos es la conjetura de Maldacena, que muestra la equivalencia entre una teoría con gravedad (no la de nuestro universo, pero algo es algo) y la teoría de los campos cuánticos. La conjetura de Maldacena es de 1997, 23 años después de que Stephen Hawking mostrara el primer resultado cuántico (la radiación de Hawking) en un espacio curvado por la relatividad general, que fue formulada hace más de 100 años. ¿Será acaso una teoría de cuerdas la solución? ¿O alguna de sus alternativas, loop quantum gravity u otra? ¿Y cuándo se zanjará la cuestión? No lo sabemos, podría llevar 100 años más, mal que le pese a los ansiosos, medios de prensa incluídos.

¿Qué pasó antes del Big Bang? Los resultados del satélite Planck, publicados en 2018, apuntan a que la inflación cósmica (propuesta en 1979, casi 40 años antes) realmente ocurrió, y que tanto las misteriosas materia oscura (vislumbrada desde las décadas de 1920 y 30), como la energía oscura (propuesta por Einstein en 1915, si realmente se trata de la constante cosmologica), son reales. Esto ha dado un fuerte espaldarazo al modelo cosmológico llamado ΛCDM (constante cosmológica más materia oscura fría), descartando muchas de las altenativas. Pero la cantidad de cabos sueltos es todavía inmensa. ¿Cuándo veremos por primera vez una partícula de materia oscura, si es que existen? ¿Y si no existen, entonces qué? Y así van pasando las décadas.

Es así nomás.


La ilustración es un famoso grabado de un libro de Camille Flammarion, coloreado por un usuario de Wikipedia (Heikenwaelder Hugo, CC BY-SA).

A propósito de esta lentitud de la ciencia, recomiendo la charla de Guillermo Martínez en la Jornada sobre Ciencia y No ciencia organizada por la Asociación Astronómica Argentina, que puede escucharse (el registro de video es deficiente) en Youtube: youtu.be/VqBNsHC4_tc. La charla de Martínez es la segunda. Las charlas de Alberto Rojo y de Diego Golombek también están buenas.

No hay comentarios:

Publicar un comentario