sábado, 17 de noviembre de 2018

Bend it like Newton

Esto va a sorprender a más de uno (no a los alumnos del curso de Mecánica clásica, porque lo tomamos en el primer Parcial este cuatrimestre). Suele creerse que la desviación de la luz por acción de la gravedad (como en las lentes gravitacionales que mostré recientemente) es un fenómeno característico de la Relatividad General. Es, después de todo, el que consagró la fama mundial de Einstein cuando fue verificado por Eddington en el eclipse de 1919. Pero no: la gravedad newtoniana también predice una desviación de la luz.

Chan.

Fíjense un poco, no es tan extraño: la aceleración que sufre un objeto por acción de la gravedad no depende de la masa del objeto, sino solamente de la masa del cuerpo que produce el campo gravitatorio. Lo descubrió Galileo hace 400 años: las piedras pesadas caen al mismo tiempo que las livianas. Asi que el hecho de que las partículas de luz, los fotones, no tengan masa en reposo, es irrelevante. De hecho, cuando uno hace el cálculo (ver aquí al lado) la masa desaparece casi mágicamente, y sólo queda la deflexión, como la sonrisa del gato de Cheshire. Resulta la mitad que en la Relatividad General: para el caso de un rayo rasante a la superficie del Sol da 0.87".

Curiosamente, el propio Newton debe haberlo sabido. En las Queries, que concluyen su tratado de Óptica, dice:

Query 1. ¿Acaso los cuerpos no actúan sobre la luz, y por su acción desvían sus rayos; y no es esta acción (si el resto es igual) más intensa a la mínima distancia?

Nótese el negativo: Newton no se está preguntando si ocurre o no; da toda la impresión de ser una pregunta retórica, como que el tipo sabe la respuesta. ¿Lo calculó? No lo sabemos. "I was interrupted", dice. No se conserva ningún cálculo publicado, o manuscrito, o referencia al respecto. El que sí lo calculó y lo publicó fue el astrónomo alemán Johann von Soldner, en 1801. Estaba interesado en saber si la atracción de la Tierra afectaría las observaciones astronómicas, como la refracción en la atmósfera. Le dio un valor tan imperceptible que se podía ignorar. Pero, ya que estaba, lo calculó para un rayo rasante al Sol, y le dio 0.84", muy bien. No revisé el cálculo, pero debe ser parecido al que hice yo y que puse ahí arriba.


Poco más de un siglo más tarde, en 1911, Einstein lo calculó nuevamente en el contexto de la Relatividad Especial (no menciona a von Soldner). Esto fue antes de la Relatividad General, y le dio 0.87". Una expedición germano-americana intentó verificarlo en 1914 durante un eclipse de Sol en Crimea. Pero se desató la Primera Guerra Mundial y el astrónomo alemán fue detenido. El americano no (Estados Unidos todavía era neutral), pero igual se nubló. Doble fracaso. Menos mal, porque les hubiera dado el doble de lo que predecía Einstein. ¡Qué habría sido de la Relatividad General! En 1915 Einstein completó la teoría y encontró que la deflexión era exactamente el doble debido al efecto adicional de la curvatura del espacio-tiempo, que por supuesto no existe en la gravitación newtoniana. Y finalmente en mayo de 1919 Eddington y colegas observaron el famoso eclipse desde África y Brasil que consagró la validez de la Relatividad General. En su reporte de los resultados, Eddington de hecho menciona que podía encontrarse con "deflexión nula", "media deflexión" (newtoniana) o "deflexión entera" (einsteniana).

Al acercarse el centenario del histórico experimento crucial, seguramente volveremos a ocuparnos de la expedición de Eddington y su verificación de la Relatividad General.


El título, por supuesto, hace referencia a la excelente película Bend it like Beckham. ¿Cómo que no la viste?

El gif de la lente gravitacional del principio lo hice usando un videíto de la ESA.

Compartir:

sábado, 10 de noviembre de 2018

Photobombing en el supercúmulo

La semana pasada mostré preciosos arcos luminosos en el cúmulo de galaxias Abell 370, que son imágenes elongadas de galaxias más lejanas, distorsionadas por el efecto de lente gravitacional. En el campo paralelo de Abell 370, fotografiado como comparación en el programa Frontier Fields, no se veían arcos. Pero en realidad el campo paralelo se ve así:


¡Epa! ¿Hay lente gravitacional en el campo paralelo? No, no. Si se fijan bien estos arcos son distintos que las galaxias distorsionadas como el Dragón. Son bien brillantes, regulares y no son concéntricos. En la imagen de Abell 370 también aparecen, pero los astrónomos los remueven para no confundir:


¡Son asteroides que se colaron en la foto! Resulta que Abell 370, en la constelación de Cetus, la Ballena, está muy cerca de la eclíptica, que es el plano donde orbitan la mayor parte de los cuerpos del sistema solar. Así se ve hoy a medianoche, por si alguien quere salir a cazar dragones:


Por estar cerca de la eclíptica unos cuantos asteroides se colaron en la foto. Sus imágenes están movidas porque las fotos de los Frontier Fields son exposiciones extremadamente largas, y el telescopio espacial Hubble se mueve en su órbita mientras las hace. A eso se debe también la formita curvada de las trazas de los asteroides. Además hay trazas repetidas, porque la foto es tan larga que se la obtuvo haciendo múltiples exposiciones (llamadas épocas) a lo largo de años, acomodándolas intercaladas con las de muchos otros proyectos del telescopio.

Las imágenes con los asteroides también son preciosas, y nos recuerdan las muchas vicisitudes que tiene la astronomía en el mundo real. Las fotos fantásticas a las que nos hemos acostumbrado están muy procesadas por los expertos en imágenes antes de llegar al público. En alguna medida todos los que compartimos nuestras fotos astronómicas también lo hacemos.


Las imágenes de Abell 370 y su campo paralelo son de NASA/ESA/Hubble Space Telescope. La imagen del cielo está hecha con Stellarium.

Compartir:

sábado, 3 de noviembre de 2018

El Dragón en la panza de la Ballena

En la constelación de la Ballena, casi exactamente en el ecuador celeste, hay un objeto extraordinario que, por razones obvias, ha recibido el sobrenombre de "el Dragón":


¡Qué es esto! Es una galaxia. A la izquierda vemos la cabeza del Dragón, que tiene pinta de galaxia espiral, con un núcleo anaranjado de estrellas antiguas y azules brazos de estrellas jóvenes, festoneados de puntos brillantes de intensa formación estelar. Un cuello, un cuerpo y una cola serpentean hacia la derecha, también pintados de naranja y celeste. Es una galaxia, pero no se parece a ninguna de las galaxias que estamos acostumbrados a ver. ¿Tal vez tiene una larga cola producto de una interacción con otra galaxia? Después de todo el Dragón parece estar nadando en un mar de otras galaxias. Pero no es eso. Otros filamentos que vemos por ahí apuntan a otro fenómeno. El campo completo de este cúmulo de galaxias, conocido como Abell 370, permite ver lo que está pasando:


En Abell 370 vemos cientos de galaxias, grandes y chicas. Pero lo más notable salta a la vista: el Dragón es un caso peculiar de una multitud de arcos luminosos, algunos reconociblemente galaxias estiradas y deformadas, formando un patrón casi circular alrededor de su centro. Abell 370, con su enorme masa, funciona como un telescopio de mala calidad, aumentando y distorsionando la luz de galaxias más lejanas. Se trata de un caso extremo de lente gravitacional, en la cual la refracción de la luz no la produce un medio material (como en una lupa de vidrio) sino la mismísima curvatura del espacio-tiempo que explica la Relatividad General.

Abell 370 es uno de los cúmulos del programa Frontier Fields, una ambiciosa campaña de observación profunda de seis cúmulos de galaxias usando el Telescopio Espacial Hubble, con la intención de aprovechar estos "telescopios naturales" para observar el universo joven, más allá de lo que el Hubble solito puede hacer. Además de cada cúmulo se observó un campo vecino, sin la lente gravitacional, con propósitos de comparación. Éste es el "aburrido" campo paralelo de Abell 370:


Vale un recordatorio: cada lucecita en estas imágenes no es una estrella, sino una gran galaxia con centenares de miles de millones de estrellas, con sus planetas, lunas, asteroides, cometas...

Además de permitir observar lejanísimas galaxias de otro modo inaccesibles, la deformación que produce la lente gravitacional permite calcular la distribución de materia en el cúmulo. Es un ejemplo de un problema inverso: dado un resultado, descubrir la causa que lo produce. Los problemas inversos son notoriamente difíciles, y es un gran mérito de los astrónomos la maestría que han logrado. Para Abell 370 la lente es así, pintando de azul la distribución de materia:


Dos cosas son notables aquí. Primero, que la distribución de materia no coincide exactamente con las galaxias que vemos formando parte del cúmulo, algunas de ellas muy brillantes, grandes y seguramente enormemente masivas. De hecho, la máxima densidad de la lente está aquí, ¡justo en un sitio donde no hay galaxias! Toda esta materia tiene masa (porque la vemos distorsionando la luz) pero no brilla como las estrellas de una galaxia. Por tal razón la llamamos materia oscura. Aparte de que existe y que produce estos efectos, no sabemos gran cosa de ella.

En segundo lugar, vemos que hay dos núcleos de materia oscura (dos partes de azul más brillante). Esto muestra que Abell 370 no es un cúmulo sino dos cúmulos en colisión (tal vez sean cuatro). Cuando chocan dos cúmulos de galaxias rara vez chocan sus miembros unas con otras, tal es la vastedad del espacio entre ellas. Pero el tenue gas que hay entre ellas sí choca, y en el choque se comprime, se calienta y queda un poco atrás del resto de su cúmulo. Ese gas caliente emite rayos X, y ha sido observado por el Telescopio Espacial Chandra. Aquí lo vemos pintado de rosa:


La separación de la nube rosa (gas caliente) y la nube azul (lente gravitacional) constituye una de las mejores evidencias de la existencia de esta rara materia oscura.

El Hubble se ha embarcado en una campaña adicional de observación de los Frontier Fields: BUFFALO (Beyond Ultra-deep Frontier Fields and Legacy Observations). Afortunadamente se solucionó la reciente falla de uno de sus giróscopos y el Hubble ha retomado su trabajo, que nos ha dado tantas maravillas en ya más de un cuarto de siglo.


Las imágenes son de NASA/ESA/STScI/Hubble Space Telescope/Chandra Space Telescope y sus muchas e internacionales instituciones asociadas.

Compartir:

sábado, 27 de octubre de 2018

Laguna de Año Nuevo

En la reciente noche del Año Nuevo 5779 del calendario hebreo ocurrieron tres eventos improbables que no podía desaprovechar: luna nueva (el calendario hebreo es lunar/solar), más excelente tiempo en invierno, más día siguiente sin clase. Era una rara oportunidad (en Bariloche) de fotografiar alguno de los magníficos objetos de la Vía Láctea invernal. Hace rato que tenía ganas de hacer una buena Nebulosa de la Laguna:


Messier 8, NGC 6523 o simplemente "la Laguna" es una de las regiones de formación estelar más activas de la galaxia. Está en la constelación de Sagitario, casi directamente en dirección al centro de la Vía Láctea. A simple vista la veíamos esa noche, apenas a 2 grados del planeta Saturno (lamentablemente el campo de mi telescopio es de 1 grado). Una nubecita insignificante que en una exposición de 80 minutos se revela como un notable vivero estelar:


El joven cúmulo estelar NGC 6530 está embebido en ella, separado de la parte más brillante del gas fluorescente por la laguna propiamente dicha, una franja oscura que si no me equivoco es el objeto 88 del catálogo de Barnard. Del lado brillante se destacan las estrellas 9 Sagittarii y HD 164816 (que a veces llaman W9). Son todas estrellas monstruosas, tipo O, jovencísimas y destinadas a explotar como supernovas. De hecho, se sospecha que a W9 la acompaña una estrella de neutrones resultado de una explosión reciente. Pero la parte más brillante es el resultado de la iluminación de la notable Herschel 36, junto a una nebulosa muy oscura que define un borde del llamado Reloj de Arena.*

La foto salió muy bien, y en estos casos me gusta comparar con las de grandes observatorios. Hay algunas fotos notables del Reloj de Arena hechas con el Telescopio Espacial Hubble (en varias longitudes de onda y con distintas cámaras). Hice un montaje donde mi foto está al 100% pero las del HST están bastante reducidas, imaginen.


Las texturas de las imágenes del Hubble son extraordinarias. De todos modos, me satisface enormemente que uno de los dos notables twisters se vea claramente en mi foto, así como la región como de cirrus que señalé como "velos".

La nebulosa está justo detrás de estas estrellas brillantes, cuya distancia ha sido medida por Gaia con gran precisión. Se encuentran a unos 4000 años luz, de manera que la luz de la nebulosa que fotografié esa noche viajó hacia nosotros durante casi toda la historia registrada por el bíblico calendario que, según el filósofo cordobés Moisés Maimónides, es la historia entera del universo. Pobre Maimónides.


Me acompañaron esa noche mi compinche de siempre, Eduardo "el Fresco" Andrés, y tres estudiantes del curso de Mecánica: Julio "el Guate" Castillo, Agustín Silva y Juan Villafañe.

Las imágenes del Telescopio Hubble son de NASA/ESA/STScI. Hay otra notable imagen que compara la región del Reloj de Arena en distintas longitudes de onda, mostrando el fantasmal aspecto en infrarrojo, con todas las estrellas dentro de la nebulosa, y un video volando dentro. Está aquí.

* Mi amigo Enzo De Bernardini señaló un error en mi identificación del Reloj de Arena: no es la nube oscura, sino la parte más brillante, que semeja dos ampollas unidas por un punto. Ya lo corregí.

Compartir:
Related Posts Plugin for WordPress, Blogger...